首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65570篇
  免费   6774篇
  国内免费   3826篇
电工技术   1941篇
技术理论   1篇
综合类   4499篇
化学工业   17927篇
金属工艺   11857篇
机械仪表   3010篇
建筑科学   6376篇
矿业工程   1576篇
能源动力   1533篇
轻工业   3710篇
水利工程   499篇
石油天然气   1531篇
武器工业   857篇
无线电   2439篇
一般工业技术   13976篇
冶金工业   3094篇
原子能技术   399篇
自动化技术   945篇
  2024年   202篇
  2023年   1109篇
  2022年   1779篇
  2021年   2186篇
  2020年   2206篇
  2019年   2049篇
  2018年   1965篇
  2017年   2568篇
  2016年   2540篇
  2015年   2503篇
  2014年   3407篇
  2013年   3654篇
  2012年   4569篇
  2011年   4859篇
  2010年   3805篇
  2009年   3972篇
  2008年   3185篇
  2007年   4313篇
  2006年   4143篇
  2005年   3459篇
  2004年   2850篇
  2003年   2544篇
  2002年   2164篇
  2001年   1886篇
  2000年   1619篇
  1999年   1248篇
  1998年   1054篇
  1997年   854篇
  1996年   743篇
  1995年   632篇
  1994年   528篇
  1993年   457篇
  1992年   335篇
  1991年   221篇
  1990年   152篇
  1989年   123篇
  1988年   86篇
  1987年   42篇
  1986年   24篇
  1985年   26篇
  1984年   23篇
  1983年   13篇
  1982年   17篇
  1981年   12篇
  1980年   18篇
  1979年   9篇
  1959年   3篇
  1957年   1篇
  1956年   1篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
31.
The dependence of the maximum and minimum wet thicknesses on the coating gap is derived for the slot-die coating process, under different slot-die configurations. Analytical expressions for the wet thickness and its derivative with respect to the coating gap are obtained using a simple flow model. The results indicate that, as expected, the minimum wet thickness increases linearly with the coating gap; however, the maximum wet thickness demonstrates a counterintuitive trend of decreasing as the coating gap increases, when a specific slot-die configuration is assumed. Moreover, the results are also validated by numerically solving the complete two-dimensional (2D) Navier–Stokes equation.  相似文献   
32.
褐煤作为低级煤资源利用率不高,但褐煤中具有腐植酸成分,将褐煤中提取的腐植酸作为化肥原料,提取后剩余残渣作为碳源,与MnS纳米粒子制备了MnS@C复合材料。采用XRD、拉曼光谱、XPS、N2吸附-脱附、SEM和TEM对样品进行了表征。将该复合材料应用于锂离子电池负极材料,对其电化学性能进行了测试。结果表明,MnS@C复合材料的比表面积和孔容分别为117.19m2/g和0.044mL/g,该电极在0.1 A/g电流密度条件下循环200次后比容量高达830 mA‧h/g,且电极容量保持率为99%左右。在0.2、0.4、0.8、1.0、1.2和1.6 A/g电流密度下比容量分别为644、522、427、399、373和348mAh/g,展现出良好的倍率性能。MnS@C复合材料优异的电化学性能得益于碳基体的存在,不仅可以缓解MnS纳米粒子在嵌锂/脱锂过程中的体积膨胀,而且展示了锂离子电池高性能的巨大潜力,为褐煤的高值化利用作出巨大贡献。  相似文献   
33.
《Ceramics International》2022,48(15):21773-21780
In this work, Ni/TiC composites were synthesized by the laser cladding technique (LCT). A scanning electron microscope (SEM), X-ray diffractometer (XRD), microhardness meter, electrochemical workstation, and friction and wear tester examined the microstructure, surface morphology, phase structure, microhardness, wear, and corrosion resistances of the Ni/TiC composites. These results indicated the Ni/40TiC composite contained finer equiaxed crystals than the Ni and Ni/20TiC composites. In addition, numerous TiC particles in the Ni/40TiC composite impeded growth of the nickel crystals, which resulted in the fine microstructure of the Ni/40TiC composite. The Ni, Ni/20TiC, and Ni/40TiC composites exhibited face-centered cubic (f c c) lattices. The average microhardness values of the Ni/20TiC and Ni/40TiC composites were approximately 748 HV and 851 HV, respectively. The Ni/40TiC composite had the lowest friction coefficient (0.43) among all three coatings, and only some shallow scratches appeared on the surface of the Ni/40TiC composite. The corrosion potential (E) of Ni/40TiC exceeded the Ni/20TiC composite, and both were larger than the Ni composite, which indicated the Ni/40TiC composite had outstanding corrosion resistance and the Ni composite had poor corrosion resistance. The corrosion current densities (i) of Ni, Ni/20TiC, and Ni/40TiC composites were 5.912, 4.405, and 3.248 μA/cm2, respectively.  相似文献   
34.
《Ceramics International》2021,47(22):31713-31723
Continuous carbon-fibre-reinforced Cs-geopolymer composite (Cf/CsGP) were prepared, and its in-situ conversion was investigated during high-temperature treatments. The effect of treatment temperature on the thermal evolution process and mechanical properties of the resulting products were systematically evaluated. The results indicated that the crystallization temperature of Cf/CsGP composite was considerably delayed because the amorphous structure of carbon fibres was not conducive as a nucleation substrate for pollucite derived from the CsGP matrix. Moreover, the integrity of the corresponding resulting products derived from the Cf/CsGP composite were damaged due to thermal shrinkage that occurred during the high-temperature treatment process. When treatment temperature was ≤1200oC, the mechanical properties of the corresponding products exhibited an upward trend, which was ascribed to the improvement of the densification degree of the resulting composite and well interface-bonding state between carbon fibres and pollucite. However, the mechanical properties of the resulting composites decreased with the treatment temperature continued increased from 1200 to 1400oC. This phenomenon was attributed to the impairment of fibre properties caused by interfacial reactions.  相似文献   
35.
Here, a fluoride-assisted route for the controlled in-situ synthesis of metal nanoparticles (NPs) (i.e., AgNPs, AuNPs) on polydimethylsiloxane (PDMS) is reported. The size and coverage of the NPs on the PDMS surface are modulated with time and over space during the synthetic process, leveraging the improved yield (10×) and faster kinetics (100×) of NP formation in the presence of F ions, compared to fluoride-free approaches. This enables the maskless preparation of both linear and step gradients and patterns of NPs in 1D and 2D on the PDMS surface. As an application in flexible plasmonics/photonics, continuous and step-wise spatial modulations of the plasmonic features of PDMS slabs with 1D and 2D AgNP gradients on the surface are demonstrated. An excellent spatially resolved tuning of key optical parameters, namely, optical density from zero to 5 and extinction ratio up to 100 dB, is achieved with AgNP gradients prepared in AgF solution for 12 minutes; the performance are comparable to those of commercial dielectric/interference filters. When used as a rejection filter in optical fluorescence microscopy, the AgNP-PDMS slabs are able to reject the excitation laser at 405 nm and retain the green fluorescence of microbeads (100 µm) used as test cases.  相似文献   
36.
37.
《Ceramics International》2022,48(8):10601-10612
Using MgC2O4, Mg powders as raw materials and Ni(NO3)2?6H2O as a catalyst, CNTs/MgO composite powders were prepared by a catalytic combustion synthesis method. The CNTs/MgO composite powders were characterized by XRD, Raman spectroscopy, FESEM/EDS and HRTEM. The effects of catalyst content on the degree of graphitization and aspect ratio of the CNTs in composite powders were investigated. Moreover, the thermal shock resistance of low-carbon Al2O3–C refractories after adding the composite powder was investigated. The results indicated that the CNTs prepared with 1 wt% Ni(NO3)2?6H2O addition had a higher degree of graphitization and aspect ratio. In particular, the aspect ratio could reach approximately 200. The growth mechanism of hollow bamboo-like CNTs in the composite powders was proven to be a V-L-S mechanism. The thermal shock resistance of Al2O3–C samples could be improved significantly after adding CNTs/MgO composite powders. In particular, compared with CM0, the residual strength ratio of Al2O3–C samples with added 2.5 wt% composite powders could be increased 63.9%.  相似文献   
38.
《Ceramics International》2022,48(18):25984-25995
Design of architectured composites with layered-ordered structure can solve the strength-toughness mismatch problem of structural materials. In the present study, heterostructure Ti6Al4V/TiAl laminated composite sheets with different thicknesses of interface layer and TiAl composite layer were successfully produced by hot-pressing technology. The effects of interface regulation and laminated structure on their mechanical properties, crack propagation, and fracture behavior were studied. The results indicated that compressive strength of the sheets increased with the decrease in interface thickness. Compressive strength of TiAl composite sheet with thicker composite layer reached 1481.55 MPa at the arrester orientation with sintering holding time of 40 min, which was 25.96% higher than that of the sheet obtained at 120 min. Analysis indicated that the interface area transferred stress through slip bands and through-interface cracks. Compressive strength at the divider orientation reached 1443.06 MPa, which was 45.78% higher than that of the sheet obtained at 120 min. In this case, the interface area transferred stress through slip bands and along-interface cracks. For TiAl composite sheets with thinner composite layer, compressive strength was further improved to 1631.01 MPa and 1594.66 MPa at the arrester and divider orientations with sintering holding time of 40 min, respectively. The ductile metal layer exerted a significant toughening effect. Both interface regulation and laminated structure transformation could enhance the hetero-deformation induced (HDI) strengthening and improve the comprehensive mechanical properties of the composite sheets.  相似文献   
39.
SiC/SiC ceramic matrix composites (CMCs) are being developed for use in aero-engines to replace nickel superalloy components. Sub-element testing acts as the key stepping stone in bridging understanding derived from basic coupon testing and more complex component testing. This study presents the development of high temperature C-shape sub-element testing with the use of digital image correlation to study damage progression. The specimen is designed with a bias towards a mixed mode-stress state more similar to what a CMC component may see in service. Both monotonic and fatigue tests were completed on C specimens and compared with predicted behaviour from modelling. Test data from both test types suggested that specimens were failing once they reached a critical radial stress level. However evidence from fractography of specimens showed that in both monotonic and fatigue tests radial cracks (driven by hoop stresses) are initiating prior to circumferential cracks.  相似文献   
40.
Poly(4-styrenesulfonic acid) (PSSA) doped polypyrrole (PPy)/tungsten oxide (WO3)/reduced graphene oxide (rGO) hybrid nanocomposite have been successfully synthesized using appropriate amounts of PSSA, pyrrole monomer, WO3, and rGO dispersed in aqueous solution through in situ chemical oxidation polymerization. Here, a simple spin coating method was used to fabricate a nitric oxide (NO) gas sensor composed of the aforementioned nanocomposite on a surface acoustic wave (SAW) resonator. This sensor can detect NO gas at concentrations of 1–110 parts per billion (ppb) at room temperature in dry air, with a sensitivity of 12 Hz/ppb and response and recovery times of <2 min. Moreover, its limit of detection (LOD) is 0.31 ppb for a signal to noise ratio of 3. It demonstrates repeatability, fast response, and recovery at room temperature. Moreover, its sensory performance remains highly stable over 30 days with only a 6.3% decrease in sensitivity. In addition, the sensor is highly selective for NO, even when nitrogen dioxide, ammonia, and carbon dioxide are applied as interfering gases. The inclusion of rGO (with large specific surface area) and the synergic effect of n-type WO3 nanoparticles in the p-type PPy matrix (leading to p-n heterojunction region formation) possibly underlie the efficient sensing performance of our sensor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号